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Figure 1. RNA duplex substrate used for aminoacylation experiments.
The G3:U70 base pair that is essential for aminoacylation with alanine
is boxed. The adjacent 4:69 base pair that was studied here is boxed and
shaded. Nucleotides are numbered on the basis of their positi&n in

We report here a remarkable example of functional interactions coli tRNAA2 (GGC isoacceptor).

with a nonessential base pair in an RNA helix. The results suggest

that interactions at a “nonconserved” pair can contribute signifi-

cantly to the specificity of RNA-protein interactions.
Aminoacyl-tRNA synthetases specific for alanine, aspartic acid,

cysteine, glutamine, glycine, histidine, isoleucine, methionine,

We speculated that, because functional interactions with the
2'-OH occurred at position 4, base-specific substitutions that
changed the character of the minor groove at 4:69 might reveal
additional functional contacts in this region. Paradoxically, in

serine, tyrosine, and valine catalyze the sequence-specific aminouytending our previous work, we were particularly surprised to

acylation of short helical RNAs that mimic the acceptor stem of
their cognate tRNAS:2 In these cases, the helical RNA substrates

are composed of as few as four base pairs affixed to the common

single-stranded NCC4y present at the '&and of all tRNAs

(Figure 1). The specificity of these reactions remains high even

though the efficiency of aminoacylation is reduced relative to that

observed with full tRNA. The sequences/structures embedded

within tRNA acceptor stems constitute an “operational RNA code”

for amino acids’. This code may have predated the genetic code.

A G3:U70 base pair within the acceptor stem of tRM4s a
major determinant for aminoacylation with alanine (Figur&®).
The unpaired, exocyclic 2-amino group of G3 marks RNA

substrates for alanine acceptance and contributes more than 3 kca

mol to transition-state stabilization for aminoacylatfor(This
contribution is significantly greater than that which might be
attributed to a helix distortiory The 2-OHs at positions 4, 70,
and 71 are also important for RNA recognition by alanyl-tRNA

see that many substitutions at 4:69 (e.g., C:G, I:C, G:U, A:U,
U:A) had a minimal effect on aminoacylation efficiency (Figure
2A). These observations showed that the enzyme does not
recognize a specific base pair at this position. We surmised that,
if there are minor groove functional effects at 4:69, then these
effects must be subtle. The question was whether substitutions
at the 4:69 position could be found that severely affected
aminoacylation. For this purpose, the placement of an unpaired
exocyclic amino group at the 69-position was of special interest
(such as in U4:G69). While this pair places the 2-amino group
in the same location on the dyad axis as that obtained with the
petive G4:U69-containing substrdtehe angle at which the amino
group protrudes onto the dyad is different.

Chemical synthesid was used to prepare RNA duplex
substrate’$ containing either G4:C69 (wild-type (a control)), U4:
G69, or U4:169 base pairs. The remainder of the duplex sequence

synthetase (AlaRS), with each contributing between 1 and 2 kcal/ was based on the first nine base pairs of BEseherichia coli

mol to transition-state stabilizatidfi. These elements of RNA

tRNAA2 gacceptor-TPC helix plus the single-stranded ACGA

recognition form a cluster of atoms that is centered around the 3 end (Figure 1). (For this alanine system, results of substitutions

essential 2-amino group of G3.
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in duplex substrates have been in accord with those seen in full
tRNA substrates?) The initial rate of aminoacylation for the U4:
G69 duplex was about 5% of that of the wild-type duplex (Figure
2B).1516 |n contrast, the U4:169 duplex variant was efficiently
aminoacylated. Thus, the defect in aminoacylation efficiency
observed with the U4:G69 duplex appears to be specifically
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groove at position 69.
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further supporting the notion that an unpaired amino group
presented from position 69 is detrimental to RNA recognition by
AlaRS!?8

The results demonstrate that alanyl-tRNA synthetase is sensitive
to base substitutions at the 4:69 position of duplex RNA

G:.C C:G substrates. The remarkable subtlety of the interaction at this
(WT) position undoubtedly enhances the specificity of the overall
v Nt VAR interaction with the duplex substrate. Possibly, the effect of
r, R n—_— N>/_§\:N presenting an unpaired amino group in the minor groove at
R = N N = R position 69 perturbs interaction of AlaRS with the minor groove
e kR RO 2'-OH of position 4. This 20H has previously been shown to
AU U:A be thermodynamically significant for RNA recognitiéh.One
Q mechanism by which this perturbation could occur is through a
n ON>_\§ N e el water-mediated hydrogen bond between an unpaired BtH
N( I Nrnd Nr Van N N>/—\> position 69 and the'20H at position 4. (Crystallographic analysis
Foh= B P of several G:U-containing RNA helices, including the acceptor
A LC °F stem ofE. coli tRNAA?, elucidated a network of water-mediated
GU : interactions that connett, ?* for example, the free 2-amino group
of the G with adjacent atomic groups (including@H) in the
B minor groove.) Thus, the water-mediated interactions seen in the
(/_\(c’ ; \° structures of proteinnucleic acid complex@% 3> might manifest
N_{‘ """""""" 2 N N_{*' ? S themselves in functional effects at nonconserved base pairs.
R Nowmn H_NWN\R AR STEVARN N However, regardless of the detailed interpretation, these subtle
H_N>=” =N functional effects in the RNA minor groove demonstrate the
H higher order sophistication of the determinants of specificity of
UG ul protein—RNA complexes and the constraints on sequences of even
(5:3%) (71%) nonconserved pairs.
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Figure 2. (A) Structure of base-pair substitutions evaluated at position

4:69 that were charged at a rate within a factor of 3 of that of the wild- JA9809152
type duplex. (B) lllustration of base pairs incorporated at position 4:69

of duplex substrates to assess the effect of an unpaired amino group (18) Attempts were made to synthesize oligonucleotides containing 4-oxo-
presented in the minor groove at position 69. The efficiency of pyrimidine in order to directly assess the contribution to transition state

aminoacylation (as a percentage of appakefK, for the wild-type (G4:

destabilization of the unpaired amino group presented in the minor groove by
G4:isoC69. However, this base analogue proved insufficiently stable to

C69) substrate) for each pair is shown in parentheses.
(19) Westhof, E.; Dumas, P.; Moras, Biochimie1988 70, 145-165.
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numerous protection/deprotection schemes rendering this approach impractical.



